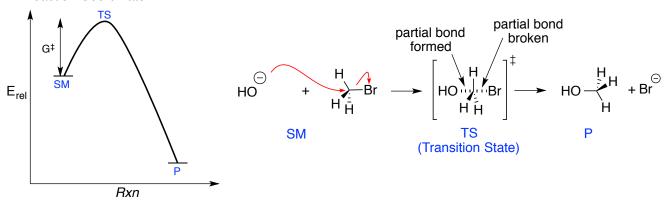
Chemistry 233 Chapter 11 Handout - Substitution Reactions


S_N2 Reaction - Substitution Nucleophilic Bimolecular

$$H_3C-X$$
 + $:Nu$ \longrightarrow H_3C-Nu + X^{\bigcirc}

Only a single step in the reaction This single step must then = slow step

Rate =
$$k \left[H_3 C - X \right] \left[Nu^- \right]$$

Reaction Coordinate:

G[‡] = energy required to get to the transition state

S_N1 Reaction - Substitution Nucleophilic Unimolecular

Rxn

$$X + : Nu \longrightarrow Nu + X$$

More than one step involved in the reaction with discrete intermediate Carbocation formation is the rate determining step

Only a single reactant (the alkyl) halide is involved in the rate determining step = unimolecular

Rate =
$$k$$

Changing the concentration of R-X changes the reaction rate Chaing the concentration of any other reactants will not affect the rate

 $H_2\ddot{O}$:

 $H_2\ddot{O}$:

Alkyl Halide Reactivity

Common Nucleophiles

Str	ong	Weak			
X	CI	Br [⊝]	I [⊝]		F [⊖]
s	${\sf HS}^{igoriangle}$	RS^{\circleddash}	H_2S	RSH	H ₂ O
o	HO^{\circleddash}	RO^\circleddash			ROH
С	N≣C [⊝]	R−C≡∈	·)		

Good Leaving Groups

Common Solvents

Polar Protic	Polar Aprotic	Non-Polar
H-N-H OH AcOH H ₃ C O H O H MeOH EtOH	dimethylsulfoxide N,N -dimethylformamide $(DMSO)$ (DMF) O H ₃ C \longrightarrow N acetone acetonitrile tetrahydrofuran (THF)	hexane CCI ₄ carbontetrachloride
Used in S _N 1 Reactions	Used in S _N 2 Reactions	Not Used in Substitution Reactions

$\underline{Differentiating\ Between\ S_N1\ and\ S_N2}$

Factor	Favoring S _N 2	Favoring S _N 1
Substrate	Methyl or primary	Tertiary
Nucleophile	Strong nucleophile	Weak Nucleophile
Leaving Group	Good leaving group	Very good leaving group
Solvent	Polar Aprotic	Polar Protic